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The problem of the fastest sequential circumvention of a group of moving points by a third-order non-linear controlled object 
is investigated. The necessary conditions for optimal&y of the control and the convergence times are used in the form of Pontryagin’s 
Maximum Principle and the conditions for smoothing the Hamiltonian. The problem is not assumed to be divisible into several 
successively solvable “two-point problems”. 0 2003 Elsevier Science Ltd. All rights reserved. 

The difference between the problem investigated here and problems previously considered is that there 
are not one but several target points, which must be circumvented sequentially (in time) in a given order 
of traversal. The complexity of the problem is that it cannot be divided into several successively solvable 
two-point problems, each consisting of motion from one point to the next. Here, when going from one 
point to another, one has to utilize information concerning all the points to be traversed in the future, 
since disregard of such information may seriously detract from the quality of the control [l]. Use will 
be made of the necessary conditions for optimal@ of the control and the time parameters, in the form 
of the Maximum Principle and conditions for smoothing the Hamiltonian, obtained for the problem 
of sequential control [l], of which the problem considered here is a special case. It is assumed that the 
controlled object goes round the points in order of increasing indices of the points (where the initial 
point is assigned the index zero), and that each two consecutively numbered points are fairly far apart 
at any time: the distance between them exceeds four minimum return radii. Under these conditions, 
it follows from the Maximum Principle that an optimal trajectory can consist only of arcs of circles of 
minimum radius and straight-line sections connecting them. At the common points of the arcs and 
sections, the circles and straight lines containing them are tangent to one another; the last target point 
is an end-point of the last section, but all other target points belong to appropriate arcs. The smoothing 
conditions are converted into relations from which it follows that the target points on the arcs must be 
in certain positions. Thus, the Maximum Principle and smoothing conditions yield a unique 
determination of the optimal trajectory. 

A similarly formulated problem was considered in [2], where the maximum mismatch between the 
target points and the positions of the controlled object in a plane was minimized at certain times, with 
the system functioning in a given interval. Minimization was achieved by choosing the control and these 
times. 

1. FORMULATION OF THE PROBLEM 

The motion of a non-linear controlled object in a three-dimensional phase space, over a fairly long time 
interval T = [to, to] (where to and 1’ are given numbers, to < to), is described by the system of eqllations 

X=cosa, jr=sina, &=u; [u/S1 (1.1) 

wherex,y and a are the coordinates of the phase vector of system (1.1) and u is a control parameter 
satisfying the above-mentioned restriction. The state (xo,yo, ao) of the object (1.1) at the initial time to 
is assumed to be given: 

(1.2) 
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As is well known [3,4], system (1.1) describes the simplest motion of an aircraft (automobile) in the 
horizontal plane 0,~. In that case x and y are the coordinates of the aircraft, which is identified with a 
point in the plane, and a is the angle between the velocity vector V = (i, jl) and the x axis; u is a parameter 
characterizing the rate of change of the angle a. 

This model has been used to formulate both game-theoretical [5--l l] and control problems [ 12-191. 
In particular, an optimal control has been synthesized to steer an aircraft in minimum time from an 
initial position to a fixed point of the plane of motion [12]. The same problem has been solved for a 
more complex model of the motion, described by a non-linear fourth-order system [13]. 

Earlier publications [3-191 have, as a rule, considered a system of equations that differs from (1.1) 
in having a constant coefficient V, on the right of the first two equations and a constant coefficient K 
on the right of the third. These coefficients may be avoided, however, by compression or extension of 
the coordinates x, y and the time f. 

In what follows we shall assume that the time t’), t” > tO, is fairly long. 
We will choose as the class of admissible controls the set U of all piecewise-continuous (right- 

continuous) scalar functions U : T -+ {u : 1 u 1 G 1). Every control U E U generates a motion beginning 
at the initial point (xc,, yO, a& which we will denote by 

(x,9Yu,“u) = ((x,(t),y,(t),a,(r)), t E n 

We will mean by a trajectory of system (1. l), generated by a control U, the set ((&,(t), y,(t)), t E ‘0 in 
the Oxy plane. 

Let us consider a given group of points in the Oxy plane, say H$(t) (in what follows, unless otherwise 
stated, i = 1, 2, . . . . m), moving long known trajectories 

Wi(f) = g(t), to s t s to 

(gi : T + R’ are given vector-valued functions). To fix our ideas and to simplify the calculations, let us 
assume that each point Wi(t) is moving uniformly along a corresponding straight line Li passing through 
the points (xo,yo) and wr(to), increasing its distance from the point (xo,yo). In that case the vector-valued 
function gi(t) may be expressed as 

g(r) = Npo)+ Vi@ - to), fo s t s to 

where v; is a given two-dimensional velocity vector, directed from the point (x0, yo) to the point W’i(to). 
Suppose vii, v,~, vi are the coordinates and magnitude of this vector, v, c 1, pi is the angle between the 
Ox axis and the vector v;, and X,(t) and K(t) are the coordinates of the point K’Jt) at time t, t E T. 

We shall assume that the distance between two neighbouring points K’j(tiJ and Wi+l(tO) (i = 0, 1, . ., 
m - 1) is greater than four units. 

Definition. We shall say that a control U E U makes system (1.1) approach the points W’i(t) if times 
t, exist such that 

The initialproblem is to determine a control li E U that makes system (1.1) approach the points w,(t) 
in the least time, and to determine the time ti at which this is achieved. 

We will define the order of approach by the relation 

(1.3) 

that is, the points are serviced in increasing order of their indices. 

2. THE NECESSARY CONDITIONS FOR OPTIMALITY 
OF THE CONTROLS AND TIMES 

In what follows we shall use the necessary conditions for optimality of a programmed control and the 
choice of the time parameters in the form of Pontryagin’s Maximum Principle [20], as well as the 
conditions for smoothing the Hamiltonian, established in [l] for the problem of sequential control. For 
completeness, we present them here, except that as admissible controls we will use the set of piecewise- 
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continuous functions, and not the set of generalized programmed control-measures [21-251. The latter 
were used in [l] to guarantee the existence of an optimal control and the correct satisfaction of the 
boundary and intermediate conditions. In what follows, the existence of a piecewise-continuous control 
in the main problem will be assumed a priori. 

Let us recall the previous investigation [l] of the motion of a control system in Euclidean n-space X 
over a given time interval T (see Section l), described by a vector differential equation 

i=ff(t,x,u), x(f,,)=x,,; us P, teT (2.1) 

where x E X is the phase vector of system (2.1) u is an r-dimensional control parameter satisfying the 
above geometrical constraint, P C R’ is a compact set, and II and I are given natural numbers. As usual 
[21-251, the function f : T xX x P + X is subject to three conditions: joint continuity with respect to 
all its variables, the existence of continuous partial derivatives ajJaxi (where xj are the coordinates of 
the vectorx andfi are the coordinates of the vector-valued functionf(j = 1,2, . . ., n)), and continuability 
of the solutions, meaning that a number a > 0 exists for which 

IIf(r,x,u>II,~a(l+IlxII,> WET, VEX, UEP 

( ]]x ]] a is the Euclidean norm of a vector x E R”). 
Suppose R is the real line, T is the set of all m-dimensional vectors t whose coordinates ti satisfy the 

constraint (1.3), U is the set of all piecewise-continuous (right continuous) r-dimensional vector-valued 
functions U: T + P; cpu = (cp,( ) r , t E T) is the motion beginning at the initial point x(to) generated by 
a control U E U, s(tT, t ] U*) is the fundamental solution matrix of the variational system [26] 

j = -L’(t)y 
[L@) = af(~~~u)l~=“*(,),~=..*(f~ 

for the motion cpu* generated by a control U* (tT being some instant of time, t < tT>; and pi: T xX + R; 
Ki: TxX+ R” (s < n) are functions that are continuous and continuously differentiable (smooth) with 
respect to the set of variables. We assume 

J(tVU)=f @i(fi?Cp”(fi)) (4U)EBxU 
i=l 

Let W denote the set of all pairs (t, U) E U x U satisfying the relations 

Ki(ri99,(ti))=o 

It is assumed that this set is not empty. 
The fundamentalproblem is to minimize the quality criterion J(t, U) over the set W. In other words, 

it is required to select a pair (t, U) which will steer the controllable system onto the manifold 

Mi =((r,~): Ki(t,x)=O) 

at times ti in such a way that the sum of the values of the function Qi, evaluated at the points (ti, q,(ti)), 
is a minimum. 

Similar problems, in a game-theoretical setting, were considered in [27-291. 

Theorem 1. Let (t*, U*) be the optimal solution of the main problem and let tT < tg+i for any i = 1, 
2 7 .**7 m - 1. Then vectors AI, AT E R” exist for which the functions @E(t) defined by the relations 

i=k 
(2.2) 

for any k = 1, 2, . . . . m satisfy the following relation almost everywhere in the interval [t&i, tk] 
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and the following equality at the times t$ (k = 1, 2, . , nz - 1) 

3% = ma@; 0; ))‘f(r;, q,* 0; ), u) - ar a4 -- 
UEP (r;.(Pu* 0; )) at 4 

&“, (IX)) 

(2.3) 

(2.41 

The latter relations will henceforth be called the smoothing conditions. 
If one adds the equation 

x,+1 = 1, x,+,00) = to 

to system (2.1) and then sets 

Qrn =Xn+,(fm), @; zo, i=l,2 )...) m-l 

the fundamental problem becomes a time-optimal problem. Thus, Theorem 1 may be used in solving 
the time-optimal problem of a non-linear system circumventing a set of points lI$(t). 

We first note that the function v;(t) = (1T)‘,S(tT, t ] U*) may be expressed in standard form [20] as a 
solution of the vector equation 

+; = -L’(t)yf; (2.5) 

with boundary condition vi(ti) = 1: (2.2). 

Indeed, it is well known (see [24, p. 1341) that the matrix S(ty, f 1 u*) satisfies the equation 

dS’(ti’,t 1 II’) 
dt 

= -L’(t)S’(ti’,t 1 U’) 

Multiplying the right- and left-hand sides of the last equation by 17 and taking the equation .S’(t;, t 1 u*)f; = 
(fy)‘S(t*, t/ (/*) into consideration, we conclude that the function VT, defined by formula (2.2) satisfies Eq. (2.5) 
with boundary condition wy(tT) = 1:. 

3. CONSTRUCTION OF THE OPTIMAL TRAJECTORY 

Pontryagin’s Maximum Principle was used in the past [12, 131 to solve the time-optimal problem of 
steering system (1.1) from the initial position (1.2) to the origin 0 = (0,O) of the Oxy plane. It has been 
shown [12, 131 that if the origin lies outside the discs C i, C, bounded by circles Ci and C- of unit 
radius touching the straight line 

(x-~o)sinao-(y-yo)cosao =0 (3.1) 

at the point (xo,yo), then the optimal trajectory (OT) consists of an arc of the circle C+ or an arc of the 
circle C- and a segment of a straight line. Note that this is precisely the structure of the last sector of 
an OT between the points W,,+, and W,,,. But if the origin 0 lies in one of the discs C$, C;, then the 
OT will consist of two arcs of circles. To be precise: if 0 E C,‘, the OT will be the union of an arc of 
C- and an arc of a circle C3 touching C- and passing through the origin. 

The simplicity of the solution of this problem may be explained as follows. First, for the initial system 
(1.1) the vector equation (2.5) is equivalent to a system of scalar equations 

jf;, = 0, jt;* = 0, $ti3 = yti,y - l+tizx (3.2) 

in the coordinates of the vector vi. Second, for i = m = 1 the structure of the optimal control is defined 
bY 

u=signy13, VI3 *to 
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Third, system (3.2) has an analytical solution 

(ct, c2 and c3 are constants of integration, yet to be determined). Moreover, it follows from the 
transversality condition that c3 = 0. Thus, the straight line cly - c2x = 0 divides the entire half-plane 
of motion into two parts; for motion in one of them, u = 1, and for motion in the other, u = -1. 

To reduce the initial problem to the fundamental problem, we introduce an additional equation 

i=l, zoo I= to 

Foranyi = 1, . . . , m - 1 the functions @i: T x R4 + R are defined as identically zero, while the function 
@,Jt, x, y, cp, z) is put equal to z - to. In the case considered Ki are two-dimensional functions whose 
components Ku (j = 1, 2) are defined by the relations 

Ki, =x-(xi(f(j)+(Z-f())vi]9 Ki2 =Y-(~(~o)+(Z-~O)U~~) 

Therefore, the vectors AT occurring in the formulation of Theorem 1, which have to be defined, will 
be two-dimensional. Their coordinates will be denoted by -Ail, -Ai2, Then the vectors 1: (see Theorem 
1) will be defined by the relations 

1; =(~,,,~,~,%--~,pm, -&pm2 -1)’ 

1,~ =(Ail,Ai2rO,-hilUil -Ai2Ui2)‘, i=I,2,...,m-l 

where the prime denotes transposition. 
As before, we let vii (j = 1, 2, 3, 4) denote the coordinates of the vector-valued function vi(t), 

t E [to, tt]. In the case under consideration, the variation of the function vi(t) over the time interval 
[to, ti] is described by a system consisting of Eqs (3.2) plus the equation \/li4 = 0, with boundary conditions 

Wi,(ti)=Ailr Wiz(ri)=Ai2, Wi3(ri)=O 

Vi4 = 
-‘iPi - ‘i2Ui2r i#m 
-Ai,uii, - Ai~i.r - 1, i = m (3.3) 

where Au (j = 1, 2, . . . . 4) are as yet undetermined constants of integration. 
It is obvious that for any control U E U and any time t E [to, ti] 

Wi,(t)=Ail(Yu(f)--(ti))-Ai2(X,(t)-Xi(t,)) (3.4) 

Let vkj (k = 1, 2, . . . . m; j = 1, 2, 3, 4) be the coordinates of the vector vf (2.2). It follows from 
expressions (2.2) and (3.4) that (in what follows, summation is from i = k to i = m) 

Vk3 =ZAil(y, -q(t,))-Ai2(Xu -X,(ti)), VkI =CAilv Fk2 =zAi, (3.5) 

In accordance with the Maximum Principle (2.3) the control active in the time interval [tk-i, tk] is the 
control U defined by 

U(t) = sign Vk3(r), Fk3W f 0 (3.6) 

Define 

Then (see (3.5)) 

Pk =T(Ai,X,(t,)-‘i,~(‘i)) 

vk3(‘) =~k,Yu(r)-~k2Xu(f)+ Pk 

In view of relations (3.3)-(3.6), the straight line 

Sk = {k y) : iJ,,y - Fkzx + Pk = O} (3.7) 
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divides the entire plane of motion into two parts, in one of which (over the time interval [tk-i, tk]) the 
control is U(t) = 1, and in the other, U(t) = -1. Motion is also possible along the straight line Sk of 
(3.7) under the action of the control u(t) = 0, which is a singular control for the problem under 
investigation here [22]. 

Using the Maximum Principle - relation (2.3) and its corollary (3.6) one can show that an OT is the 
union of arcsQ (i = 0, 1, . . , m - 1) of circles of unit radius and segments Gk (k = 1, 2, . . , m) of 
straight lines (3.7) connecting them; in these trajectories, the arcs and segments are tangent to one 
another at their common points. In addition, the first part of an OT is generally an arc Da, and the last 
part is a segment G,, ending at the point W,,,; the number of arcs is equal to the number of moving 
targets, and the encounter of the controlled object with the targets Wi(t) occurs on the corresponding 
arcs Q, that is, Wi(ti) E Di (i = 1, 2, , m - 1). The proof of this proposition is based on establishing, 
using relation (3.6) that any other structure of an OT is impossible. 

We shall now show that the position of the point Wi(tj) on the appropriate arc Di is uniquely defined 
by the smoothing condition (2.4) which implies that the vectors V(rJ - vi(ti), A:, where V(tJ, and vi(ti) 
are the velocity vectors of the controlled object and the ith target, respectively, at the point of encounter, 
must be orthogonal; the vector AT was defined in Theorem 1. 

We first observe that in the case under consideration the functions (Pi: R”+’ -+ R; K,: Rn+’ -+ R2 do 
not depend explicitly on time. Hence the last two terms on the right-hand side of (2.4) must be omitted. 
In the initial and auxiliary systems (1.1) and (3.2) the smoothing conditions (2.4) have the form 

Wk+,1 COS% 4 + v ( 1 k+12 sina,(r;)+(~k+,3(t;)(= Vkl cosa,(4)+ 

+~l12sina,(f;)+J~;j(~~)J-(v,,A,, +uk2Ak2), i=l, 2, . . . . m-l (3.8) 

(vkl and vkz are the coordinates of the velocity vector vk of the kth target). 
In view of relations (3.4) and (3.5) we have the following equalities 

(3.9) 

It follows from relations (3.8) and (3.9) that 

~k,(cosu,(+k,) +A,,(sinac,(r;)-v,,)=O (3.10) 

Equality (3.10) has the following geometrical meaning: at the time t: the controlled object encounters 
the kth target, the velocity vectors V(t) - vk(t), AZ are orthogonal, which it was required to prove. 

Remark. If the target points W;(r) are stationary, this fact can be used to show that the points Wi(t) 
divide the corresponding arcs D, into two equal parts. 

4. EXAMPLE 

We shall indicate formulae to construct optimal trajectories of system (1.1) when m = 1 and m = 2. 
To simplify the calculations we shall assume, without loss of generality, that to = xg = ~0 = a0 = 0. 

For m = 1, the OT will consist of an arc Q, of a circle and a section of a straight line. The length CI 
of the arc of this OT may be determined from the equation 

where 

L.mb+a=h,r Iv, (4.1) 

Lb = km --xJ2 +(Ym -YJ. h-m, = (-%I -x1)* +(Ym -YJ2 

x, = 
xb sin a - y, cosa 
sina-tgp,cosa ’ 

Y, =xmtgP,; PI $5 

xb = sin a, yb = l-cosa 

x, = Xi(O),y, = Y(0) are the coordinates of the point W,(t) at time t = 0. 

(4.2) 
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Fig. 1 

Equation (4.1) was derived in the following way. One first determines the coordinates x,, ym of the 
point M at which the straight lines 

4 :ycosp, =xsinp, (4.3) 

S, : (x-xb)sina-(y-yb)cosa=O (4.4) 

intersect (the straight line S, is tangent at B = (xb, yb) to the circle that contains the arc Do). One then 
equates the time tr = h,r/v, of motion of the first target between the points WI(O) and A4 to the time 
t = &, + a of motion of the controlled object between the points WO(WO = (0,O)) and M along the 
arc and the section. 

Now consider the case when m = 2. These are four possible relative positions of the straight lines 
I,, and L2 determined by the angles PI and p2 and the velocity vector of the controlled object at the 
starting time. We shall consider only one of them, say (see Fig. 1) 

ocp, <II, p,-xcp* q3, (4.5) 

Auxiliary problem 1. At a given time t, c 2 cl (tr = h,rlvr) of convergence of the controlled object to 
the first moving target, it is required to construct a convergence trajectory consisting of two arcs of unit 
circles and a straight-line section connecting them. 

Solution. Let a be the angle of inclination of the straight line S1 containing the first straight-line section 
of the desired trajectory. Then, first, a is the length of the first arc of the desired trajectory; second, 
the coordinates xb, yb of the point B at which the first arc touches the straight line Sr (Fig. 1) are 
determined by the last two formulae of (4.2); third, the equation of the straight line S, has the form 
(4.4). The coordinates x,, y, of the point M at which the controlled object encounters the first target 
are given by the formulae 

Then 

-%n = X,(ro)+ultcos/3,, y, = $(fo)+u,tsinp, 

d =I(y, - yb)cosa-(x, -xb)sinal (4.6) 

is the distance from M to the straight line Sr. The length 6 of the second arc of the trajectory is defined 
by the relations 

6:cos6=1-d, sin6=dm (4.7) 

The coordinatesxd, yd of the point D at which the second arc touches the straight line S1 and the length 
1 BD 1 of the straight-line section of the trajectory are given by the formulae 

xnl -dsina-sin6cosa, yd ‘y,,, +dcosa-sinhsina 

;.= h, 

(4.8) 
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Since the velocity of motion of the controlled object along its trajectory is unity, then, equating the 
length of the whole trajectory to the time of motion, we obtain the equation 

a+p3D(+6=t (4.9) 

which may be used to determine the angle a. Having evaluated this angle, one obtains the solution of 
Auxiliary Problem 1 in the case (4.5), since the coordinates of the characteristic points B, M and D of 
the trajectory are defined by formulae (4.2) and (4.8). 

The parameters of the trajectory we have found depend on the value oft. Let us choose the time t 
of encounter with the first target in such a way that the trajectory W@DM is part of the trajectory which 
solves the following problem. 

Auxiliaryproblem 2. In the case (4.5) it is required to determine a trajectory along which system (2.1) 
converges to two moving points Wr and W2, consisting of two arcs of circles and two straight line sections 
and having the least possible length. 

Let cp be the length of the second part of the second arc of the desired trajectory; w = a - 6 - cp. 
Then 6 + cp is the total length of that arc. The coordinates+ yfof the point F at which that arc touches 
the final straight-line section of the trajectory are defined by 

Xf = xb +IBD(cosa+sina-sin\y, 

yf =y,+IBDjsina-cosa+cosv 

The straight line Sz containing the second straight-line section is described by the equation 

S, : (y-yl)CosW-(x-xf)sinW=O 

The coordinates x,,, yp of the point P at which this straight line intersects the straight line 

L, :Y=xtgP2 

are evaluated by the formulae 

xp = yf cos w - xf sin w /(cos w tg p2 - sin w), yp = xp tg fi2 

To determine the time of encounter tz of the controlled object with the second target and the angle 
cp, we have two equations 

Eliminating the parameter t2, from these equations, we obtain an equation 

A, = (5 -X,j/(u,COS~Z)-t-(P (4.10) 

for determining the angle cp. Calculating cp we get 

f2 =(x,-~,)$J2co$2)) (4.11) 

As shown earlier, a necessary condition for the trajectory thus constructed to be optimal is the 
orthogonality of the vectors V(t) - vr(t) and A;, where V(t) and vr(t) are the velocity vectors of the 
controlled object and of the first target, respectively, at their point of encounter M; the vector AT was 
defined in Theorem 1. 

It can be shown that the required condition is satisfied if the time t at which the controlled object 
meets the first target is determined from the equation 

vIs-Hsin(6+fl, -a)-cos(y+6)=0 (4.12) 

where 
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dB x 
Fig. 2 

d 
Y=arctgtg[(cp+6)/2]-sin6’ ‘=I+” -2v, cos(b+p, -a) 

The angle a is determined as a function of the parameter t from Eq. (4.9). The distance d and the angle 
6, as functions oft and a, are determined from relations (4.6) and (4.7), and the angle cp is found from 
Eq. (4.10). Having evaluated the time t, we solve Auxiliary Problem 2. In the case (4.5) under 
consideration the trajectory constructed is indeed optimal, since there is a unique time t satisfying Eq. 
(4.12). 

Figure 2 shows the form of the optimal trajectory in the case when 

0 s p, c n, p1 s pz c p, + 71 

This research was supported financially by the Russian Foundation for Basic Research (00-01-00348, 
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